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CHAPTER 1

diffusive_distinguishability

Simulation of homogeneous diffusion, bayesian estimation of underlying diffusion constant and analysis of distin-
guishability between diffusivities

1.1 Getting Started

The python package ndim_homogeneous_distinguishability.py contains the meat of this project, as a
set of functions which can be used to:

1. Simulate diffusive trajectories (pure diffusion with a homogeneous diffusion constant)

2. Use Bayesian inference to estimate the diffusion constant used to generate a trajectory by producing a posterior
diffusivity distribution

3. Analyze the dependence of diffusivity estimation error, and the ability to distinguish between trajectories with
differing diffusivities, conditional on model parameters

Examples of how to use these functions, as well as some of our own analysis of diffusivity distinguishability, are
provided in the Jupyter notebook ndim_diffusion_analysis_tutorial.ipynb.

Also included are some stored pre-calculated numpy arrays used in the provided Jupyter notebook example anal-
ysis (in the directory loc_error_saved_files) and another Jupyter notebook containing a toy model quan-
tifying the relative impact of localization error on diffusion estimates conditional on number of spatial dimensions
(test_overestimation.ipynb).

• Free software: Allen Institute Software License

• Documentation: https://diffusive-distinguishability.readthedocs.io.
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1.2 Support

We are not currently supporting this code, but simply releasing it to the community AS IS but are not able to provide
any guarantees of support. The community is welcome to submit issues, but you should not expect an active response.

1.3 Associated text

Below is a working abstract for the ‘Bayesian detection of diffusive heterogeneity’ project found in this repo:

1.3.1 Abstract

Cells are crowded and spatially heterogeneous, complicating the transport of organelles,proteins and other substrates.
The diffusion constant partially characterizes dynamicsin complex cellular environments but, when taken on a per-cell
basis, fails to capturespatial dependence of diffusivity. Measuring spatial dependence of diffusivity ischallenging be-
cause temporally and spatially finite observations offer limitedinformation about a spatially varying stochastic process.
We present a Bayesianframework that estimates diffusion constants from single particle trajectories, andpredicts our
ability to distinguish differences in diffusion constants, conditional on howmuch they differ and the amount of data
collected.

1.3.2 Introduction

Diffusion is essential for the intracellular transport of organelles, proteins and substrates, and is commonly character-
ized through analyses of single particle tracking (SPT) in live-cell images. While powerful analyses from SPT have
indicated the complexity of transport in live cells, the spatial variation of the diffusion constant remains poorly charac-
terized. This can be attributed to challenges in disentangling effects of biological heterogeneity and limited sampling
of a stochastic process. To address these challenges, we developed a Bayesian framework to estimate a posterior
distribution of the possible diffusion constants underlying SPT dynamics. This framework can be used to generate a
look-up table predicting the detectability of differences in diffusion constants, conditional on the ratio of their values
and amount of trajectory data collected.

1.3.3 Materials and methods

We simulate particle diffusion in a range of homogeneous diffusion constants, and digest the resulting trajectories into
frame-to-frame displacements. Using an inverse-gamma conjugate prior, we make the conservative guess that any
order of magnitude of diffusion constant is equally likely. The set of displacements in a single trajectory are used to
generate a posterior inverse-gamma distribution estimating the probability that any given diffusion constant was used
to generate the trajectory. This distribution peaks near the true diffusion constant and has a width corresponding to the
confidence interval of our estimate, which is largely determined by the trajectory length. Given a pair of posteriors
derived for trajectories with differing underlying diffusion constants, we can characterize their similarity by comput-
ing the Kullback-Leibler divergence. This metric acts as a single-value estimation of how well we can analytically
distinguish that trajectories were generated from different diffusion constants. For longer trajectory lengths, stochastic
variations will be less dominant, increasing distinguishability.

1.3.4 Results

To assess the conditional feasibility of computationally detecting differences in diffusivity, we generate a landscape
of the KL divergence between posteriors generated from pairs of simulations, with varying trajectory lengths and dif-
ferences in diffusivity. To further correct for stochastic variations in simulations, the KL divergence reported for each
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entry in the landscape is the mean value from thousands of replicates. We find that, using this method, diffusivities
differing by a factor of 1.5 or more can be easily distinguished when at least 50 timepoints are reported for each trajec-
tory. This landscape offers a look-up table for estimating the number of frames that must be acquired experimentally
to distinguish diffusivities to a desired precision. This framework could therefore play a valuable role in describing
the feasibility of and requirements for experiments addressing the spatial heterogeneity of the intracellular diffusive
environment. To address the affects of static localization error of punctate objects from microscopy images, we in-
cluded Gaussian error to the particle location at each point in its trajectory. The standard deviation of this Gaussian
determines the amount of localization error applied. Now, error in the ability to detect the underlying diffusion con-
stant is a compound error due to the affects of both localization error and error in Bayesian estimation of the posterior
maximum.

1.3.5 Conclusion

The spatial heterogeneity of diffusion may have major impacts in the transport ofessential cellular substrates but
remains largely uncharacterized. To shed light on thefeasibility of resolving spatial from stochastic drivers of diffusive
heterogeneity intrajectory data, we developed a framework for predicting our ability to detect differences in diffusivity,
conditional on the amount of experimental data collected. Our framework can therefore be used to inform the design
of experiments aimed to characterize the spatial dependence of diffusivity across cells.

1.4 Credits

This package was created with Cookiecutter.

1.4. Credits 3
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CHAPTER 2

Installation

2.1 Stable release

To install diffusive_distinguishability, run this command in your terminal:

$ pip install diffusive_distinguishability

This is the preferred method to install diffusive_distinguishability, as it will always install the most recent stable
release.

If you don’t have pip installed, this Python installation guide can guide you through the process.

2.2 From sources

The sources for diffusive_distinguishability can be downloaded from the Github repo.

You can either clone the public repository:

$ git clone git://github.com/jcass11/diffusive_distinguishability

Or download the tarball:

$ curl -OL https://github.com/jcass11/diffusive_distinguishability/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install
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CHAPTER 3

Usage

To use diffusive_distinguishability in a project:

import diffusive_distinguishability
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CHAPTER 4

diffusive_distinguishability

4.1 diffusive_distinguishability package

4.1.1 Subpackages

diffusive_distinguishability.bin package

Module contents

Bin scripts package for diffusive_distinguishability.

diffusive_distinguishability.tests package

Submodules

diffusive_distinguishability.tests.test_ndim_homogeneous_distinguishability module

Module contents

Unit test package for diffusive_distinguishability.
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4.1.2 Submodules

4.1.3 diffusive_distinguishability.ndim_homogeneous_distinguishability module

diffusive_distinguishability.ndim_homogeneous_distinguishability.compare2(n_dim,
d_const1,
mult,
n_steps,
dt,
n_reps,
loc_std=0)

For one pair of diffusion constants (d_const, d_const*mult) get KL divergence of their posteriors, where the
posteriors are generated from an alpha and beta which are the median values from repeating posterior estimation
n_reps times.

Parameters

• n_dim – number of spatial dimensions

• d_const1 – diffusion constant (um2/s)

• mult – multiplier to get d_const2 = mult*d_const1

• n_steps – trajectory length (number of steps)

• dt – timestep size (s)

• n_reps – number of trajectory replicates

• loc_std – standard deviation of localization error (um)

diffusive_distinguishability.ndim_homogeneous_distinguishability.error_sensitivity(d_const,
n_steps_list,
dt,
n_reps,
loc_std)

Look at how the mean and median percent error of the posterior mean relative to the true value depend on the
trajectory length used to generate posteriors and number of reps we run.

Parameters

• d_const – diffusion constants (um2/s)

• n_steps_list – list of trajectory lengths to test

• dt – timestep(s) used to generate trajectories (s)

• n_reps – number(s) of reps to run to calculate mean and mediate percent error

• loc_std – standard deviation for Gaussian localization error (um)

Returns three dataframes (for 1, 2, and 3 dimensions); each contains the mean percent posterior
error relative to

true diffusion constant value, for all pairs of trajectory lengths and localization errors includes in these two input
lists

diffusive_distinguishability.ndim_homogeneous_distinguishability.estimate_diffusion(n_dim,
dt,
dr,
prior=<scipy.stats._distn_infrastructure.rv_frozen
ob-
ject>)

10 Chapter 4. diffusive_distinguishability



diffusive𝑑𝑖𝑠𝑡𝑖𝑛𝑔𝑢𝑖𝑠ℎ𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.1.0

Returns the posterior estimate for the diffusion constant given the displacement data and the prior.

Parameters

• n_dim – number of spatial dimensions for simulation (1, 2, or 3)

• dt – timestep size (s)

• dr – list of normed step sizes from a single trajectory (um)

• prior – inverse gamma prior distribution estimate for the diffusion constant

Returns inverse gamma posterior distribution estimate for the diffusion constant

diffusive_distinguishability.ndim_homogeneous_distinguishability.fill_heatmap_gen(n_dim,
d_const,
mult_list,
n_steps,
dt,
n_reps,
loc_std=0)

Generate a heatmap of KL divergence values for pairwise comparison of diffusion constant posterior distribu-
tions. Compared posteriors are generated by scanning through pairings of [d_const, mult*d_const] where mult
takes on the range of values provided by mult_list and trajectory lengths. For each pair of diffusion constants,
generate a trajectory of length n_steps and find the associated posterior parameter fit, repeating n_reps times to
get median parameter values (alpha, beta). Use these median values of alpha and beta to select one posterior dif-
fusion constant distribution for that diffusion constant. Repeat this process for diffusion constant d_const*mult,
then calculate the KL divergence of the posteriors for (d_const, d_const*multiplier) and store in dataframe. Re-
peat for all pairs of (n_steps, multiplier) to fill the dataframe. The results is a heatmap of how distinguishable
two diff constants are, conditional upon their relative values and the length of trajectories used.

Parameters

• n_dim – number of spatial dimensions

• d_const – diffusion constant (um2/s)

• mult_list – list of multipliers to get set of d_const2 values, where d_const2 =
mult*d_const

• n_steps – trajectory length (number of steps)

• dt – timestep size (s)

• n_reps – number of trajectories

• loc_std – standard deviation of localization error (um)

Return df dataframe containing the pairwise KL divergences

diffusive_distinguishability.ndim_homogeneous_distinguishability.generate_posterior(n_dim,
d_const,
n_steps,
dt,
loc_std=0)

Simulate a single trajectory and find the diffusion constant posterior (inverse gamma) distribution.

Parameters

• n_dim – number of spatial dimensions

• d_const – diffusion constant (um2/s)

• n_steps – trajectory length (number of steps)

4.1. diffusive_distinguishability package 11
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• dt – timestep size (s)

• loc_std – standard deviation for Gaussian localization error (um)

Return alpha, beta scale and shape parameters for inverse gamma posterior for a diffusive trajec-
tory

diffusive_distinguishability.ndim_homogeneous_distinguishability.get_dim_error(n_dim,
d_const,
n_steps,
dt,
n_reps,
show_plot,
loc_std=0)

Given a diffusion constant, get the posterior for a trajectory of length n_steps and timestep dt. Repeat n_reps
times and report/plot hist of the percent error of the mean posterior values vs true diffusivity values.

Parameters

• n_dim – number of spatial dimensions

• d_const – diffusion constant (um2/s) whose estimator error we want to calculate

• n_steps – trajectory length (number of steps)

• dt – timestep size (s)

• n_reps – number of trajectory replicates

• show_plot – T/F flag of whether or not to display histograms of estimator errors

• loc_std – standard deviation of localization error (um)

Return p_error array of percent error between mean posterior estimation and true value for each
run with each

number of dimensions

diffusive_distinguishability.ndim_homogeneous_distinguishability.get_posterior_set(n_dim,
d_const,
n_steps,
dt,
n_reps,
loc_std=0)

Repeat analysis generating a posterior diffusion constant distribution per trajectory for multiple trajectories and
return (1) full set and (2) median values of distribution fit parameters.

Parameters

• n_dim – number of spatial dimensions

• d_const – diffusion constant (um2/s)

• n_steps – trajectory length (number of steps)

• dt – timestep size (s)

• n_reps – number of trajectory replicates

• loc_std – standard deviation for Gaussian localization error (um)

Return alpha, beta, alpha_std, beta_std, alphas, betas medians, std deviations and arrays of scale
and

shape parameters for inverse gamma posteriors for n_reps diffusive trajectories

12 Chapter 4. diffusive_distinguishability
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diffusive_distinguishability.ndim_homogeneous_distinguishability.get_single_error(dim,
d_const,
n_steps,
dt,
n,
loc_std)

Generate single posterior and calculate percent error of posterior mean relative to the true value.

Parameters

• dim – number of spatial dimensions

• d_const – diffusion constant (um2/s) whose estimator error we want to calculate

• n_steps – trajectory length (number of steps)

• dt – timestep size (s)

• n – trajectory number

• loc_std – standard deviation of localization error (um)

Returns percent error for a single posterior mean relative to true value

diffusive_distinguishability.ndim_homogeneous_distinguishability.get_ticks(tick_values,
n_round,
n_ticks)

Round tick values and keep only some ticks to improve readability.

Parameters

• tick_values – tick values

• n_round – number of decimal places to round to

• n_ticks – number of ticks to keep

Return ticks list of axis tick values to display

diffusive_distinguishability.ndim_homogeneous_distinguishability.invgamma_fullparams(dist)
Return the alpha,beta parameterization of the inverse gamma distribution.

Parameters dist – scipy inverse gamma distribution

Returns alpha and beta parameters characterizing this inverse gamma distribution

diffusive_distinguishability.ndim_homogeneous_distinguishability.invgamma_kldiv(param1,
param2)

Compute KL divergence of two inverse gamma distributions (ref: https://arxiv.org/pdf/1605.01019.pdf).

Parameters

• param1 – list containing alpha and beta parameters characterizing inverse gamma distribu-
tion 1

• param2 – list containing alpha and beta parameters characterizing inverse gamma distribu-
tion 2

Returns KL divergence of two inverse gamma distributions

4.1. diffusive_distinguishability package 13
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diffusive_distinguishability.ndim_homogeneous_distinguishability.plot_df_results(df1,
df2,
n_round,
n_ticks,
size,
ti-
tle1,
ti-
tle2,
x_lab,
y_lab)

Plot two df heatmaps as two subplots of one figure. They share x and y axis labels but have differing titles.

Parameters

• df1 – df to visualize

• df2 – second df to visualize (often log of df1)

• n_round – number of axis tick decimal places to round to

• n_ticks – number of axis ticks to keep

• size – figure size

• title1 – plot title for left (df1) panel

• title2 – plot title for left (df2) panel

• x_lab – x axis label

• y_lab – y axis label

diffusive_distinguishability.ndim_homogeneous_distinguishability.show_error_hist(n_dim,
p_error)

Plot figure with 3 subplots, where each subplot is a histogram of the percent errors from all runs in a given number
of spatial dimensions.

Parameters

• n_dim – number of spatial dimensions

• p_error – array of percent error for all runs in each number of spatial dimensions

diffusive_distinguishability.ndim_homogeneous_distinguishability.simulate_diffusion_df(n_dim,
d_const,
n_steps,
dt,
loc_std=0)

Simulate and output a single trajectory of homogeneous diffusion in a specified number of dimensions.

Parameters

• n_dim – number of spatial dimensions for simulation (1, 2, or 3)

• d_const – diffusion constant (um2/s)

• n_steps – trajectory length (number of steps)

• dt – timestep size (s)

• loc_std – standard deviation for Gaussian localization error (um)

Returns trajectory dataframe (position in n_dim dimensions, at each timepoint)

14 Chapter 4. diffusive_distinguishability
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diffusive_distinguishability.ndim_homogeneous_distinguishability.trajectory_df_from_data(trajectory)
If you are using experimental rather than simulated trajectories: this is an example function for how you might
import your own timelapse trajectory and put into the required dataframe format, compatible with this notebook
for analysis. This function will likely require edits for individual use, to make it compatible with your input
trajectory format.

Parameters trajectory – list or array of spatial positions, where each entry is the position at a
single timepoint

(may be 1D, 2D or 3D) :return: dataframe containing trajectory, n-dimensional displacement vectors for each
timestep, and step size magnitudes for each timestep

4.1.4 Module contents

Top-level package for diffusive_distinguishability.

diffusive_distinguishability.get_module_version()

4.1. diffusive_distinguishability package 15
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CHAPTER 5

Allen Institute Contribution Agreement

5.1 Terms

This document describes the terms under which you may make “Contributions” — which may include without limita-
tion, software additions, revisions, bug fixes, configuration changes, documentation, or any other materials — to any
of the projects owned or managed by the Allen Institute. If you have questions about these terms, please contact us at
terms@alleninstitute.org.

You certify that:

• Your Contributions are either:

1. Created in whole or in part by you and you have the right to submit them under the designated license (described
below); or

2. Based upon previous work that, to the best of your knowledge, is covered under an appropriate open source
license and you have the right under that license to submit that work with modifications, whether created in
whole or in part by you, under the designated license; or

3. Provided directly to you by some other person who certified (1) or (2) and you have not modified them.

• You are granting your Contributions to the Allen Institute under the terms of the [2-Clause BSD license](https:
//opensource.org/licenses/BSD-2-Clause) (the “designated license”).

• You understand and agree that the Allen Institute projects and your Contributions are public and that a record
of the Contributions (including all metadata and personal information you submit with them) is maintained
indefinitely and may be redistributed consistent with the Allen Institute’s mission and the 2-Clause BSD license.

5.1.1 Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:
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5.2 Types of Contributions

Report bugs at https://github.com/jcass11/diffusive_distinguishability/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help wanted” is open to whoever wants
to implement it.

Look through the GitHub issues for features. Anything tagged with “enhancement” and “help wanted” is open to
whoever wants to implement it.

diffusive_distinguishability could always use more documentation, whether as part of the official diffu-
sive_distinguishability docs, in docstrings, or even on the web in blog posts, articles, and such.

The best way to send feedback is to file an issue at https://github.com/jcass11/diffusive_distinguishability/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

5.3 Get Started!

Ready to contribute? Here’s how to set up diffusive_distinguishability for local development.

1. Fork the diffusive_distinguishability repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/diffusive_distinguishability.git

3. Install your local copy into a virtualenv (or anaconda environment). Assuming you have virtualenvwrapper
installed, this is how you set up your fork for local development:

$ mkvirtualenv diffusive_distinguishability
$ cd diffusive_distinguishability/
$ pip install -r requirements_dev.txt
$ pip install -e .

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing other
Python versions with tox:

$ flake8 diffusive_distinguishability
$ make test-all

18 Chapter 5. Allen Institute Contribution Agreement
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To get flake8 and tox, just pip install them into your virtualenv.

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Resolves gh-###. Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

5.4 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 3.6 and 3.7, and for PyPy. Check https://travis-ci.org/jcass11/diffusive_
distinguishability/pull_requests and make sure that the tests pass for all supported Python versions.

5.5 Tips

To run a subset of tests:

$ py.test tests.test_diffusive_distinguishability

5.6 Deploying

A reminder for the maintainers on how to deploy. Make sure all your changes are committed (including an entry in
HISTORY.rst). Then run:

$ bumpversion patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

5.4. Pull Request Guidelines 19
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CHAPTER 6

Credits

6.1 Development Lead

• Julie Cass <juliec@alleninstitute.org>

6.2 Contributors

None yet. Why not be the first?
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CHAPTER 7

History

7.1 0.1.0 (2019-04-25)

• First release on PyPI.
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CHAPTER 8

Indices and tables

• genindex

• modindex

• search
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